

$$
\begin{aligned}
& y=-\left|\frac{5 x}{5}-\frac{15}{5}\right|+2 \\
&-|5(x-3)|+2 \\
& \text { flip Right \& vp }
\end{aligned}
$$



Use slope

$$
\frac{4}{5}=\frac{\text { up } 4}{\text { right } 5}
$$

For shading...

$$
>\mathrm{up} \uparrow<\operatorname{down} \downarrow
$$



$$
x^{v e} 0<3
$$

$$
6 x+3 y \geq 18
$$

Option \#1: Convert to slope-intercept

$$
\begin{aligned}
6 x+3 y & \geq 18 \\
-6 x & -6 x
\end{aligned}
$$

$$
\begin{aligned}
& \frac{3 y}{3} \geq \frac{-6 x}{3}+\frac{18}{3} \\
& y \geq-2 x+6
\end{aligned}
$$

$$
\begin{aligned}
& \wedge_{3} \wedge \\
& \{(0,0)\}
\end{aligned}
$$

$$
y \geq-2 x+6
$$

option $\#_{2}$ : Kill/Use
Intercepts

$$
\begin{aligned}
& 6 x+\left[\frac{3 y}{3}=\frac{18}{3}\right] \\
& y=0 \quad(0,6)
\end{aligned}
$$



$$
0 \geq-2(0)+6
$$

$$
0 \geq 6 \text { fols }
$$

$$
\begin{aligned}
& \frac{6 x}{6}+3 y=\frac{18}{6} \\
& x=3 \quad(3,0)
\end{aligned}
$$

$$
\begin{array}{lr}
f(3)=(3)^{2}-4(3)+5=9-12+5 \\
f(-2)=(-2)^{2}-4(-2)+5 & -3+5=2
\end{array} \quad f(3)=2
$$

b) $f(x)=\frac{5 x-6}{2 x}$
2.) ( 8 pts total, 4 pts each) Suppose $f(x)=3 x-5$ and $g(x)=x^{2}+6$
a) Find $\frac{g(3)}{f(2)}$.

For what values) of x would $\frac{g(x)}{f(x)}$ not be a function, if any.

$$
\frac{g(3)}{f(2)}=\frac{(3)^{2}+6}{3(2)-5}=\frac{9+6}{6-5}=\frac{15}{1}=15
$$

b) $\overline{\text { bind } f(-1) \cdot g(0)} \quad \frac{g(x)}{f(x)} \longleftarrow$ cannot be $\varnothing$

For what values) of x would $f(x) \cdot g(x)$ not be a function, if any.


$$
(3(-1)-5)\left((0)^{2}+6\right)
$$

Look for when the denominator equals $\varnothing$. $3 x-5 \neq 0$
3.) (8 pts total, 2 pts each) Which of the following graphs represents a function? Write either "function" or "not a function".
a)

b)

c)

d)

4.) ( 8 pts total, 4 pts ooh) Write the equation for the line formed by each slope and point. Include both slope-intercept and point stope forms.
a) $(-2,4), \mathrm{m}=-3$

$$
\text { plug into } y=m x+b
$$

b) $(0,-5), m=1 / 2$

Please do not just convert into
5.) (8 pts total, 4 pts each) Find the slope and intercepts for each of the following lines: $y=m \times+b$
a) $4 x+6 y=-12$

$$
\overline{x-i n t} i y=i n t
$$

$$
\text { slope } \longrightarrow
$$

$$
x \text {-int } \rightarrow
$$

b) $7 x-2 y=10$

$$
y \operatorname{in} t \rightarrow
$$


6.) ( 8 pts total, 4 pts each) Find the slope for each of the following:
a) $(-5,3)$ and (7, -1)

$$
\text { slope }=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

b) $(-2,6)$ and $(4,-9)$
7.) (8 pts total, 4 pts each) Graph each of the following equations:


b) $16 x+8 y=48$

8.) ( 8 pts total, 4 pts each) Determine the equation for each of the following:
a) Write the equation for a line through $(-2,7)$ and perpendicular to $y=-2 x+5$. perpendicular
slopes opposite inverses 1.) Find given slope $\frac{-2}{1}$
b) Write the equation for a line parallel to $y=3 x-2$ that passes through (1, -3 )
$y=-2 x+5$
Given slope $=-\frac{2}{1}$
2.) Needed slope

$$
-\frac{2}{1} \rightarrow \frac{\text { opp }}{1} \rightarrow\left(\frac{\text { invert }}{\frac{1}{2}}\right.
$$

3.)
$y=m x+b$
$\nu=\downarrow \downarrow$
$7=\left(\frac{1}{2}\right)(-2)+b$

$$
7=-1+b
$$

$$
+1+1 \quad 8=b
$$

9.) ( 8 pts total, 4 pts each) Each of the following depicts a direct variation function. For each, find the constant of variation and show the relationship in an equation.
a) If $y=12$ when $x=3$
Find y when $\mathrm{x}=9$

$$
y=k x \quad k=\frac{y}{x}
$$

1.) Find $k$
2.) Find $y=k x$
3.) Solve for either $x$ or $y$

Find x when $\mathrm{y}=2$
10.) ( 8 pts total, 4 pts each) For each of the following, determine whether y varies directly with x . If so, find the constant of variation and write the equation.
a)


| $x$ | $y$ |
| :---: | :---: |
| -1 | -4 |
| 2 | 8 |
| 3 | 12 |

b)

| $x$ | $y$ |
| :---: | :---: |
| -3 | 9 |
| 0 | 1 |
| 1 | 4 |

11.) ( 6 pts total, 3 pts each) For each of the following, find the vertex of the absolute value function. Then graph the function.
a) $f(x)=|2 x+3|-5$
$2 \div \frac{1}{2}$


2

$$
y=\left|\frac{1}{2}(x-4)\right|+6^{\frac{1}{2}}
$$



12.) ( 6 pts total, 3 pts each) For each of the following, find the vertex of the absolute value function. Then graph the function.
a) $f(x)=|x-6|$


Systems of Equations

$$
\begin{aligned}
y & =\frac{1}{2} x-3 \\
y & =\frac{5}{2} x+1 \\
y & =\frac{1}{2} x-3 \\
f(x) & =\frac{1}{2} x-3 \\
f(-2) & =\frac{1}{2}(-2)-3 \\
& -1-3=-4 \\
y & =\frac{5}{2} x+1 \\
g(x) & =\frac{5}{2} x+1 \\
g(-2) & =\frac{5}{2}(-2)+1 \\
& -5+1=-4
\end{aligned}
$$



$\frac{1}{2} x-3=\frac{5}{2} x+1$
+3
+3

$$
\begin{aligned}
\frac{1}{2} x & =\frac{5}{2} x+4 \\
-\frac{5}{2} x & -\frac{5}{2} x \\
-\frac{4}{2} x & =4 \\
\frac{-2 x}{-2} & =\frac{4}{-2} x=-2
\end{aligned}
$$



$$
\begin{aligned}
& y=4 x+3 \\
& y=4 x-1
\end{aligned}
$$

parallel
same slope

$$
\begin{aligned}
4 x+3 & =4 x-1 \\
-4 x & -4 x \\
3 & =-1 \\
-3 & -3 \\
0 & =4 \quad \text { No sol } u^{2 m}
\end{aligned}
$$

