S.	-G	Geometry	Sessim	8	7/2			
	Given	: O is the mid	point of \overline{NW}	;	Н		• W	
		$\overline{NO} \cong \overline{OC}$				>		
	Prove	$: \overline{OC} \cong \overline{OW}$			N		•	2
	Statements				Reasons			
	1. <i>C</i>) is the midpoint	of \overline{NW}	1.	GIN	<i>ien</i>		
	2.	$\overline{NO} \cong \overline{OW}$	-	2. D	ef of w	nidpoint	2	
	3.	ND ~ OC		3.		Given		
	4.	$\overline{OC} \cong \overline{OW}$		4. 5	ubstitut	ē/Syllo	gism	
		N.Q = OW	NO = OC		ōw	A -	BB-	э С
	Given	$: \overline{EF} \cong \overline{GH}$]	E F	7	G	Н	AS
	Prove	$: \overline{EG} \cong \overline{FH}$	Ĺ					
		Statements				Reasons		
	1.	$\overline{EF} \cong \overline{GH}$		1.	Given			
)¢	2. $EF = GH$		2. Def of congruency =→=				1	
	<u>3.</u> 1	EF (+ FG)= GH (+	FG	3.	Add Pu	ie i	0	
	4. $EF + FG = EG;$ GH + FG = FH 5. $EG = FH$		4. segment Add Post 5. Substitution					
	6.	$\overline{EG} \cong \overline{FH}$		6. [Jef of	congl	Jency	
						J	J	

Flow Proofs

Proofs do not always come in two-column format. Sometimes they are more visual, as you will see in this example.

DEFINITIONS AND POSTULATES REGARDING SEGMENTS				
SEGMENT ADDITION POSTULATE	If C is between A and B ,			
	then $AC + CB = AB$			
DEFINITION OF SEGMENT	If $\overline{AB} \cong \overline{CD}$, then $AB = CD$			
CONGRUENCE				
DEFINITION OF A SEGMENT	A geometric figure that divides a			
BISECTOR	segment in to two congruent halves			
DEFINITION OF A MIDPOINT	A point that bisects a segment			
DEFINITIONS AND POSTULATES REGARDING ANGLES				
ANGLE ADDITION POSTULATE	If <i>C</i> is on the interior of $\angle ABD$,			
	then $m \angle ABC + m \angle CBD = m \angle ABD$			
DEFINITION OF ANGLE	If $\angle A \cong \angle B$, then $m \angle A = m \angle B$			
CONGRUENCE				
DEFINITION OF AN ANGLE BISECTOR	A geometric figure that divides a			
	angle in to two congruent halves			

Proofs with Pictures

It is often much easier to plan and finish a proof if there is a visual aid. Use the picture to help you plan and finish the proof. Be sure that as you write each statement, you make the picture match your proof by inserting marks, measures, etc.

	Given: \overrightarrow{OE} bisects $\angle AOC$; \overrightarrow{OE} bisects $\angle DOF$; $\angle AOB \cong \angle DOE$ Prove: $\angle EOF \cong \angle BOC$	F = 400 A = 400 A = 400 A = 400 A = 400 A = 400 C = 400		
	Statements	Reasons		
\bigcirc	OB bisects XAOC	Given		
6	XAOB = X BOC	Def of bisector		
A	OF bisects > DOF	Given		
	X FOF = X DOF	Det of bisector		
	XAAB = XDOF	Given		
5	4E0F = X BOC	Substitution / syllogism		

Elementary Geometric Proofs

Segments

Segmen	15			
		R	S	Т
Given:	$RT \cong WY$; $ST \cong WX$	•		
Prove:	$\overline{RS} \cong \overline{XY}$	W X	•	Y
	Statements	R	casons	
RT=W	V	Given		
ST = V		Given		
$\{\overline{Rs} + \overline{s}\}$	T = RT	Seg Add t	lost	
$\{\overline{W}X+\}$	(Y = WY)	Seg Had 1	030	
RS+ST	= WX + XY	Substitution		
RS+WX:	= WX + XY = \overline{XY}	Sub Pot		
14 0		-		

Test Z) (Not on hapter 3 Supplemental = [80° ダー+ 32 des 1ertical linear pairs Ver ficle ¥ 3 = 180° supplemental ¥2=¥4 Z linear pairs 3 4 substitution 42=42+43 41 - 42 5 6 -\$2 Sub Pot **x**3 *1 transversa 95[°] paralle acute 290° Corresponding = 4 5 X 3 × ろ correspond = 38 Corresponding 43= 47

 $\begin{cases} exterior \\ x | = x 3 \\ vertical \\ interior \\ x | = x 5 \\ votespond \\ x 3 = x 5 \\ votestitution \end{cases}$ z 3 Ч z = x. Zexterior alternate Alternate Interior Angles angles xy = x8 corresponding - 45++8=180° linear pairs 35+34=180° substitution same side interior \$3+\$b=180° Same side interior