4.) (15 pts total) A 120 kg block is resting on afore incline at an angle of 60°. Draw the corresponding free body diagram.
a) (10 pts) Find the normal force, resulting gravitational force, and the frictional force if $\mu=0.245$.

$$
\begin{aligned}
& F_{N}=-m g \cos \theta \\
&-(120)(-9.8) \cos 60 \\
&=588 \mathrm{~N}
\end{aligned}
$$

$$
F_{f}=-\mu m g \cos \theta
$$

$$
F_{n}=m g \sin \theta
$$

$$
F_{f}=-\mu m g \cos \theta
$$

$$
-(0.245)(120)(-9.8) \cos 60^{\circ}=144 \mathrm{~N}
$$

b) (5 pts) Based on your diagram, will the block move down the incline. If so, what is its acceleration?

$$
F_{\text {ret }}=F_{m}+F_{f}
$$

F_{M}

$$
-1018 N+144 N \quad-1018 N
$$

$$
\left|f f_{n}\right\rangle f_{f}
$$

moves
-874N block mover

$$
F=m a \quad a=\frac{F}{\mathrm{~m}}=\frac{-874 \mathrm{~N}}{120 \mathrm{~kg}}=-7.3 \mathrm{~m} / \mathrm{s}^{2}
$$

5.) (10 pts) In a world without pain or injury, a 75 kg person is struck by a $4,350 \mathrm{~kg}$ automobile traveling $45 \mathrm{~m} / \mathrm{s}$. What is the resulting velocity of this cartoon person?

$$
\rho=m v \quad \frac{m_{1} v_{1}}{m_{1}}=\frac{m_{2} v_{2}}{m_{1}}
$$

$$
V_{1}=\frac{m_{2} V_{2}}{m_{1}}=\frac{(4350 \mathrm{~kg})(45 \mathrm{~m} / \mathrm{s})}{75 \mathrm{~kg}}=2610 \mathrm{n} / \mathrm{s}
$$

6.) (5 pts) What is the impulse of a puck when struck by a hockey stick exerting a constant force of $5,500 \mathrm{~N}$ for 0.04 s ?

$$
\begin{aligned}
& I=F_{* t} \\
& (5500 \mathrm{~N})(0.04 \mathrm{~s})=\frac{220 \mathrm{~kg} \mathrm{~m} / \mathrm{s}}{\left(\mathrm{~kg} / \mathrm{ks}^{\mathrm{m}}\right)^{8}}
\end{aligned}
$$

7.) (5 pts) Define both elastic and perfectly inelastic collisions. Highlights the two major differences between the two.

$$
\begin{aligned}
& \text { Elastic- momentum ; kinetic consovel } \\
& \text { energy } \\
& \text { Perfectly inelastic - momentum conserved }
\end{aligned}
$$

8.) (10 pts) A $2,400 \mathrm{~kg}$ inflatable banana travelling at $96 \mathrm{~m} / \mathrm{s} 30^{\circ}$ above horizontal collides with a $3,500 \mathrm{~kg}$ Hello Kitty doll travelling $72 \mathrm{~m} / \mathrm{s} 60^{\circ}$ above horizontal. If the collision is perfectly inelastic, find the resulting velocity.

(1)

$$
\frac{-126,000}{m v \sin \theta}
$$

y component musing θ mv ing
(2400)(96) sin 30
total $115,200+m_{1} \frac{218,238.4}{1}+m_{2} V_{2}=\left(m_{1}+m_{2}\right) v_{f}$
$x: 73,532.3 \quad y=333,438.4$
total momentum

$$
\begin{aligned}
r= & \sqrt{x^{2}+y^{2}} \\
& \sqrt{(73,532.3)^{2}+(333,438.4)^{2}}=341,450 \\
\theta= & \tan ^{-1} \frac{y}{x}=\tan ^{-1} \frac{333,438.4}{73,532.3}=77.6^{\circ}
\end{aligned}
$$

$$
\text { velocity }=\frac{\text { total momentum }}{m_{1}+m_{2}}=\frac{341.450}{2400+3500}
$$

9.) (10 pts) Stewart is also dragging a motionless... ummm... everything bagel. The bagel tied 50° from the horizontal (on level ground) and is being pulled with a force of 230 N . If Stewart pulls this tasty bagel 2500 meters, how much work is he doing on the object?

10.) (10 pts total, 5 pts each) A particle moving in the $x y$ plane undergoes a displacement $\Delta \square \mathbf{r} \square(4.0 \mathbf{i}+\square 5.0 \mathbf{j}) \mathrm{m}$ as a constant force $\mathbf{F} \square(2.0 \mathbf{i}+\square 3.0 \mathbf{j}) \mathrm{N}$ acts on the particle. a) (5 pts) Calculate the magnitudes of the displacement and the force.
$d:\langle 4.0 \hat{\imath}+5.0 \hat{\jmath}\rangle$
$F:\langle 2.0 i+3.0 \hat{j}\rangle$
magnitude $=r$

$$
r=\sqrt{x^{2}+y^{2}}
$$

$$
\begin{aligned}
& |d|=\sqrt{(4)^{2}+(5)^{2}} \\
& \sqrt{16+25}=\sqrt{41 \mathrm{~m}} \\
& |F|=\sqrt{(2)^{2}+(3)^{2}} \\
& \sqrt{4+9}=\sqrt{13} \mathrm{~N}
\end{aligned}
$$

b) (5 pts) Calculate the work done by \mathbf{F}.

$$
\begin{gathered}
W=F \cdot d \quad d:\langle 4.0 \hat{\imath}+5.0 \hat{\jmath}\rangle \\
\left(F_{x} * d_{x}\right)+\left(F_{y} * d_{y}\right) \quad F:\langle 2.0 \imath+3.0 \hat{\jmath} \downarrow\rangle \\
F \cdot d=23 J \quad 8+15=23 \\
\theta=\cos ^{-1}\left(\frac{F \cdot d}{|F||d|}\right)=\cos ^{-1}\left(\frac{23}{(\sqrt{13})(\sqrt{41})}=4.97^{\circ}\right. \\
\frac{23 J, 4.97^{\circ}}{7}
\end{gathered}
$$

11.) (10 pts) A 150 kg stuffed Campy doll is pushed off of a 720 m building. Assuming no wind or air resistance, what is Tampy's velocity just prior to impact?

